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1. Introduction

A stochastic process X = (X(t))tC is self-similar with parameter H E IR
d

(H-ss) if X(c-) = cHX(-) for all cO, and has stationary increments (si) if

d d
X(o+b)-X(b) = X(o)-X(O) for all b C ., where = means the equality of all

finite dimensional distributions. A real-valued stochastic process

X = (X(t))tCR is symmetric a-stable (SaS) if all linear combinations

-- a X(t ) have characteristic functions of the form exp{-a161a ) for some
n on n

a > 0. Here a C (0,2] and when a=2. X is Gaussian.

In this paper, we study two disjoint classes of H-self-similar symmetric

a-stable processes with stationary increments (H-ss si SaS processes). One

consists of linear fractional stable processes, which are related to moving

average stable processes, and the other consists of harmonizable fractional

stable processes, which are connected to harmonizable stationary stable

processes.

In Section 2 we give a representation of a SaS process with stationary

increments in terms of a stationary SaS process which is either nonanticipating

or fully anticipating. The representation is shown for l(a 2, but it should in

fact be valid for much larger classes than SaS processes.

In Section 3 we introduce the linear fractional stable processes A aH(a b)

(Aa(a,b;t))t, whose corresponding nonanticipating (or fully anticipating)".

stationary SaS process is a moving average. We show that when 1(a(2, to each

line through the origin of the parameter plane (ab) there corresponds a .. 0

distinct linear fractional stable process (Theorem 3.1). This result implies

that the two linear fractional processes defined independently in £12] and [21]

are different.

In Section 4 we introduce the complex harmonizable fractional stable

' "r e'_



2

processes Ga.H(ab) = (8aH(a.b;t))t ,. whose corresponding nonanticipating (or

fully anticipating) stationary SaS process is harmonizable. When l(a 2 we show

that to each line through the origin of the parameter plane (ab) there

corresponds a distinct harmonizable fractional stable process (Theorem 4.1). and

we study their domain of attraction in Section 6 (Theorems 6.1 and 6.2).

There is only one (distinct) real harmonizable fractional stable process.

namely 9e 8 aH(1.1), and it is shown in Section 5 that it is not a linear

fractional stable process when la<2 (Theorem 5.1).

The only reason the results In Sections 3-5 are stated only for 1<a 2 is

that the representation in Section 2 is established only for 1<a 2. If the

representation in Section 2 is proved also for O<al, then the same proofs would

establish the results in Sections 3-5 for all O~a<2.

It should also be mentioned that, under mild regularity conditions, the

linear and the harmonizable fractional stable processes introduced here seem to

be the only self-similar, symmetric stable processes with stationary increments

whose corresponding nonanticipating (or fully anticipating) stationary stable .

processes are moving averages and harmonizable respectively. This

characterization result is still under study.

The authors gratefully acknowledge insightful discussions on self-similar

stable processes with Murad Taqqu and Florin Avram.

2. Representation of si SaS processes

In this section we assume l<a2.

Let X = (X(t))t be a continuous in probability si SaS process with la_2. *1
De fine

(2.1) Y(t) = J- eu[X(t)X(t+u)]du = X(t) - fte-(t-U)X(u)du, tE,%

L' 1% I



3

where the integrals exist a.s. Clearly Y = (Y(t))te is a continuous in

probability, stationary SaS process which depends linearly on the past

,a increments (or values) of X. We call Y the nonanticipating stationary SaS

process corresponding to the si SaS process X, and a straightforward calculation

shows that for all s(t.

(2.2) X(t)-X(s) = Y(t)-Y(s) - rtY(v)dv.

One can also introduce the fully anticipating stationary SaS process Y

corresponding to the si SaS process hy

(2.3) Y(t) = JoeU[X(t)-X(t+u)]du = X(t) - fe-(vt)X(v)dv. teR,

and derive likewise representation (2.2).

Of course the increments of a stationary process Y define a si process X

via X(t)-X(s) = Y(t)-Y(s), and so does the indefinite integral of a stationary

process Y with a.s. locally integrable paths via X(t)-X(s) = .frY(v)dv. In fact,

a si process is the indefinite integral of a stationary process if and only if

its paths are a.s. locally absolutely continuous; and is both the increment of

some stationary process as well as the indefinite integral of some (other)

stationary process if and only it its paths are a.s. locally absolutely

continuous and its derivative process is the derivative of a stationary process.

These two simple classes of si processes are distinct (with nonempty

intersection) but their union is not broad enough to encompass all si processes

(as is easily shown via examples). Representation (2.2) is therefore the only

one generally available for all si processes.

Representation (2.2) follows also from Masani's representation of helixes

in Banach spaces ([15]). by viewing X as a helix in Lp (2..P) for lpqa. It

should be pointed out that (2.2) defines a si SaS process X for each stationary

SaS process Y even when O<a~l, provided the integral in (2.2) is well defined;

V.W, , W . * . ,% . . .. '% . ' .V . . , * . . . *. . . . " " %
'WJj ir -F .%. N.V P~ . r.4 S . 0.. .S ~1 ~*~ ~*~ m ~ ~ %~ ~q % ~ *.~. 1 W WI ~ * %%
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for necessary and sufficient conditions see [6], Theorem 4.1. The conjecture

here is that (2.2) would be valid for O~a~l as well, but there may be technical

difficulties in its derivation. For the sake of completeness we indicate the

simple proofs of (2.1) and (2.2) when 1<a 2.

Proof of (2.1). The integral in the middle expression in (2.1) will exist a.s.

if

e u EIX(t)-X(t+u)l du <

(In fact this is a necessary and sufficient condition in this SaS case ([5]).)

But the stationarity of the increments of X implies that EIX(O)-X(u)I grows

linearly in lul. The equality of the two expressions a.s. is shown likewise. a

Proof of (2.2). From (2.1) we obtain

f tY()d = ftX(v)dv - S-e'-'-eUX(u)du

= ftX()d -u ) u duSX(u)f e-(-u)dv 'VZ

= fX()d - (e -e)eX(u)du - ft"(-.u")X(u)du

= f te -( t-U)X(u)du - -'uXud

= [Y(t) - XMt) - [Y(x) - X(s)].

i.e. (2.2). The interchange of the order of integration is justified by

Fubini's theorem as for (2.1). 0

The nonanticipating or fully anticipating stationary SaS process Y

corresponding to the si SaS process X via the representation (2.2) is continuous

in probability. Every continuous in probability stationary SaS process Y

(O<a 2) has a version of the form

o: 0
, ,1%, .- -.. , .' .- . ... .. j - , ,



(2.4) Y(t) = f-'a(t~u)dZ(u), tER

where Z has independent SaS increments and control measure 1A. i.e., -

(2.5) E exp(irffdZ) = exp(-Irajffjdpi)

for f 6 La (g). (V(t))teR is a strongly continuous group of isometrics in L a(.t)

and a(t,.) = V(t){a(O..)} ([8]). Since Y has a measurable modification (being

continuous in probability), the kernel a(t~u) has a version jointly measurable

in (t,u) ([18)). and we obtain from (2.2) and (2.4). provided all integrals are

well defined.

X(t) - X(s) f 1[Ia(t.u) - a(s,u) - .fa(v,u)dv] dZ(u)

f W Jb(t.u) - b(s~u)J dZ(u),

where

t
b(t,u) - b(s~u) = a(t~u) - a(s,u) - fa(v~u)dv

s4

= [V(t) - V(s) - ftV(v)dv]{a(O.*)}(u).

The most important examples of stationary SaS processes are moving averages

and harmonizable processes. Y is a SaS moving average process (O~aK2) if

Y(t) = f' h(t-s)dM(s). tEIR, U.'

where N = (M(s)) e is a SaS motion (i.e.. has stationary, independent SaS

increments and Lebesgue control measure) and h 6 La :=L a(Leb).

Up to this point we have only considered real-valued SaS processes. When '

dealing with harmonizable processes it is natural and convenient to consider .,i

complex-valued SczS processes, indeed radially SaS complex random variables will

suffice. A complex r.v. X=X I+iX 2 is radially SaS if X1and X2are jointly SaS

with radially symmetric distribution. i.e. with z--z +iz. E exp~i~tezX} V

1 2'

%p, ~J.',?, V NV%1P
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E expfi(zIX1+z2X2 )) = exp{-cIzIa} for some c>O. A complex-valued process

X = (X(t))t is radially SaS if all complex linear combinations IN znX(tn)

are complex radially SaS r.v. 's. Y is a harmonizable stationary SaS process

(O<a2) if

(2.6) Y(t) = COei dZ(), tEIR.

where Z has complex, independent, radially SaS increments and finite spectral

(control) measure g. i.e.

(2.7) E exp(i=ezffdZ) exp(-Iz "f~fdp)

for all complex numbers z and functions f in La(1) ([4]). (Unless the stable

distribution of Z is radially symmetric, Y is not stationary ([23]).) When w is

absolutely continuous with respect to Lebesgue measure, *(X) = djCi)/dX is

called the spectral density of Y. When ji is Lebesgue measure. Z is called a P

complex SaS motion and is denoted by M. A real-valued SaS process Y is

harmonizable if '

Y(t) = gef'.eitX dZ(X). teR.

where Z is as above necessarily complex. For simplicity here we will consider

complex harmonizable processes, while moving average processes will always be

considered real.

3. The linear fractional stable processes 0

In this section we consider the linear fractional stable processes. Let

O(1<1, a,bI, and N be a SaS motion defined in Section 2. For O(a2. HAl/a.

define

J- b*- ,

% % a -m mmm I n I ~ l l i -~ l 
i

i..
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(3.1) A (a.b;t) = J,{a[(t-u)+/ - (-u /a
a .H +-) +

_ H-I/a . H-i/a.
+ b[(t-u)_ -(-u) )} dM(u), tER,

with the convention 0-O even for '<0; and for l<a 2, H = 1/a.

(3.2) A ,/a(a. b ;t) = aA(t) + bM(t), tEIR.
a. /

where

(3.3) A(t) = fo(logIt-u log lul) dM(u). tE.

The process AH(,0) was introduced in [21] and called fractional Lkvy

motion, and the process AaH(li) was introduced in [12]. and called fractional

stable process. A in (3.3) is the log-fractional stable process defined in

[11]. The process A a.H' Hgl/a, can be defined for any a. 0(<a2, but the process

A(t) can be defined only in the case 1 < a < 2. It is easy to see that the

processes (Aa,H (a*b;t))t,, as in (3.1) and (3.2) are H-ss si SaS. In the rest

of this section, we assume 1<a<2.

The nonanticipating stationary SaS process Ya,H (a,b;-) corresponding to the

ss si SaS process A (a.b;-) of (3.1) is determined via (2.1) as follows: For
a,H

tEIR

Y aHa.b;t)= eu ' { a[(t-v)+/a - (t+u-v) /a

+b[(t-v) H - l a - (t+u-v) H- 1 / a  dM(v) ) du

=Y YOe (a H-I/a H-i/a t H-i/a H-/t-v) -(t+u-v)+ + b[(t-v) - t+u-v) H-/a])du)dM(v)

(3.4) = ' hb( t-v)dM(v),

where

u H-I/a H-I/a H-i/a H-I/a
ha,b = e { a[x+ -(x+u)+ ] + bx -  -(x+u)_ } du

(3.5) =ahl(X) + bh2(,-

.. ... ,

'j- 'r "j- P r

% %.
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(3.) h(x) H-i/a -- x X+ v H- I/Gv

(3.7) h (x H-1/a - e C -v vH-l/a dv.-

Hence YH(a~b) is a moving average of the SaS motion M. i.e. a linear process.

and we call A (a~b) a linear fractional stable process. Y (a~b) is aa .H a. H

nonanticipating moving average of N only if h ()=0 for x(O. , and since for
a .b~

x(O. h1 x) = 0 but h2(x) 9 0, this is true only when b=-O.

As in (3.4). the nonanticipating stationary SaS process Y a .1/(a.b)

corresponding to the (l/a)-ss si SaS process A a . 1/(a~b;.) =aA(e) + bM(.) is

determined via (2.1) as the following moving average

(3.8) Y a./(a,b~t) = f, ( (t-u)dM(u),

where

(3.9) g (
ga~b~ agl(x) + bg2 (x).

gl(x) = logjxj - e- elgjjv

g2 (x) = e -xfor x>O, =0 for x(0.

Therefore. Y 1/a(a.b) is a nonanticipating moving average of N only when a=-O.

The linear fractional stable processes A (ab) are indexed by thea,Ha

parameters (a~b) E Rf . When a=2, the processes A2H(a~b) are Gaussian, called

fractional Brownian motion, and by comparing their covariances we see that for

all a and b with IaI+Ibj ,i 0. the processes A2H(a.b) are multiples of the same

Gaussian processes in distribution. The main purpose of this section is to show

that If lVa(2 each line through the origin of the parameter plane (a,b)

determines a distinct process in distribution (up to scaling of course).

V

Theorem~~~~~~~~~~~~~~ 3.1 Le%((.1a2 a4II0 n Hab. egvnb 31 n
(32) The wehv

%~. % %

% %V



d
C71 (ab) AH(a.b;-) = C1 ,(a'.b ') AH(a',b';)

a. aHa,H A.

where C aH(a.b) is defined by (3.10) and (3.14) below, if and only if

(i) a = a' = 0 or

(ii) b = b' = 0 or

(iii) aa'bb' A 0 and a/b = a'/b'.

Proof. Recall that for two SaS random variables X and Y. by writing E exp{irX}

d
exp{-Ir IaIIXIIa}, it follows that X and Y have the same distribution, X = Y.

if and only if they have the same scale parameters, I''xla = I yI a. Thus to

compare the marginal distributions of Aa,b;t) and A,(a',b';t) we need to

compute their scale parameters.

First assume H A 1/a. We find from (3.1) and (2.5) that

a 1a) Hl/a~H-l/aidIIAa.H(a,b;t)lla = ItiaH( (IaIa+Ibla) .lil l-vI -lvi-/av

+ f1IaIl-vIl/a- bvIH-1/aladv }

(3.10) =: ItIaH H(ab).

For simplicity we drop the subscripts of a,H. It follows that for each fixed

d
C-l(a,b)A(ab;t) = C-(a',b ')A(a'.b ';t).

where we are assuming of course that IaI+IbI 0 0 i Ia' I+b' .

In view of the one-to-one relationship between the si SaS process A(a.b;-) 0

of (3.1) and its corresponding nonanticipatory stationary SaS process Y(ab;-) 'P.

of (3.4), -

d -
(3.11) C (a.b)A(a.b;-) = c-(a',b')A(a' ,b';')  I ,

N
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is equivalent to

-71 d

i-1

C-(ab)Y(a.b;-) = C-(a ',b ')Y(a',b ';-).

which, in view of (3.4) and Kanter's theorem [9]. is equivalent to

C- (ab)hb ~t) = 6 c-l(a',b')ha ,b(t-T) a.e.(t)

for some e E {-1} and TER (depending on a.b,a'.b'); and this in turn is

equivalent to

C- (a,b){ahl(t) + bh2 (t)} = e C- (a'.b'){a'hl(t-T) + b'h2 (t-T)} a.e. (t)

in view of (3.5), which is equivalent to

a a' b b
" (3.12) { C(a,b) - 6 C(a',b') ' C(ab) = C(a ',b-)

To obtain the necessity of the last condition, take t < min(0,T), so that

h1(t) = 0 = hl(t-T) and differentiate C-l(ab)bh2 (t) = eC-
1 (a'.b ')b'h2 (t-

T ) to

obtain

bC-l (ab)(-t)H-I/a-l = F b'c-H(a',b ')(T - t )H- I/a-l a.e. t < min(0,T)

-1p

from which r = 0 and b-l (a,b) = eb'C (a' b') follow, and thus also

ac-(ab) = ac (a',b ) .

If a = 0. by (3.12). a'= 0 and (3.12) is satisfied with a = sgn(bb'), since

-p"by (3.10) .

C(O,b) = IbI{ f7 11-vIl/a IV IH-1/aladv + 1' IvI'' 1 dv

Hence if a = a' = 0 or if b =b' 0. then (3.11) is satisfied.

Now assume aa'bb' A 0. Then (3.12) is equivalent to

a a C(a, b) Ca(a',b') C(ab) = d(a',b')
( lal Ia- Ib Ib' Ic %"

-'#* #-' .'p -'# . ".- - • " " . ." " ' . '. #' ." ' ., ." ." _._.'_/' '. -- - ,- ." ' ''.-.'. -. % ' '. .- 'F.
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Putting

A = .fl it-viH-1/a - iv H-1/a a dv.

f(x) = I 111  1 H-l/a - xIvlH-1/ala dv.

g(x) = (+Ixla )A +

we have from (3.10), &(a.b) = ja j (b/a) = Iblag(a/b) and thus (3.13) is

equivalent to

a~ a' (a aa-b Y- ;7 = g( =( •. . ) = g (t )

which is equivalent to a/b = a'/b' since g({/x) = g(x)/Ixla . This completes the

proof when H X 1/a.

When H = 1/a, we find 11Al/a(ab;t)Ila = Iti dl/a(ab) with

(3.14) e,1/a(ab) = 21aa j Ilog(v) _ log via dv

+ .;f ja[log(l-v) - log v] + b Ia dv

I ala{C + f(b/a)},

where

fox) = f1 Ilog(l-v) - log v + xja dv.
;%

The rest of the argument is similar to the case H $ 1/a, using instead

expressions (3.8) and (3.9). 0

The linear fractional stable processes have the following time domain • .

symmetry

d
(3.15) Aa,Ha,b;-) = Aa.H(a b;-- ) .a .%

In general, if a self-similar process X = (X(t)) tC has a version of the form m

X(t) = f'[f(t-u) - f(-u)] dM(u). tCR.

1 .. ,0,.l-. .. . -.

% %.? . A 'eC.o
~~S&~~i'~~~/ 5 ~'k'. F r r-*~,~ ',* ~%
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where M = (M()) uCR has stationary and symmetrically distributed increments,

then X has the property (3.15). Indeed, by using the si property of M and the

symmetry of the distribution of X. we have

X(-) = f',[f(--u) - f(-u)] dM(u)

d 0
= f,[f(-v) - f(--v) dM(v)

d
= -x(--) = x-)

We now comment on the sample path properties of the linear fractional

stable processes Aa.H (ab;t) with O(a(2. The fractional Brownian motion

A2 ,H(a.b;t) has always a sample continuous version. Kolmogorov's moment

criterion implies that if X(t) is H-ss si with O(H0 l and EIX(t)IP<- for some

p>l/H, then X(t) has a sample continuous version. Since AaH (a b;t) is SaS, -

EIA a,H(a.b;t)IP(o for any O(p(a. Thus, if 1/a < H ( 1. then there exists p such

that I/H ( p ( a. and hence AH (a.b;t) has a sample continuous version; still ,

the paths have a.s. nowhere bounded variation, since H<1 ([24], Theorem 3.3).

When 0 < H 1/a, the kernels of the stable integrals defining Aa,H(a.b;t) have

singular points, which implies that their sample paths are nowhere bounded (see

[17] and [19], and for a special case [13]).

4. The harmonizable fractional stable processes

In this section, we introduce a new class of complex ss si SaS processes. -

Let 0 < a 2. 0 < H < 1, a 0, b 0, a+b > 0 and ~ be a complex SaS motion

(introduced in Section 2). Define

(41 6t (a-C 1 H-h/a 1-H-1/a AirR
(4.1) a,Hab;t) f (a.-- + bX dM(X), tE.

aHx

% %" -.....-. . .,. ., ,
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It is easy to check that 8 H(a.b;.) are H-ss si SaS. When a=2. ge 02 H(a.b;)

is the same process as the fractional Brownian motion, which is the linear

fractional stable process with a=2. This can easily be checked by calculating

the covariance functions of those processes. However, when a < 2. 8 H(a.b;)

is a new class of H-ss si radially SaS processes, as will be shown in the next

section for the case 1 < a < 2. In what follows, we assume 1 < a 2 for

technical reasons.

The nonanticipating stationary SaS process corresponding to aH(ab;')

given by (2.1) is

(4.2) Y a, a ' b "t ) t )  1 (1 -H - 1/a + bX1-H-I/a
(42 Ya~.b) H _.e (aX~+ - )dMPX), tEIR,

and is thus harmonizable of the form (2.6) with

Z(A) =0 If% , l-H-I/a bu1-H-i/a)

0 -iu-l +

In view of the harmonizability of its nonanticipating stationary process we call

the processes 8 harmonizable fractional stable processes. It is interesting
a H H

to note that the fully anticipating stationary SaS process corresponding to

GH(ab;-) given by (2.3) is

00 tX I 1 -H-I/ac b1-H-I/a) -
(4.3) f_ e ig - +) d-(), tER.

Both stationary processes in (4.2) and (4.3) are (H-i)-ss, harmonizable, and

they are identically distributed.

The complex harmonizable fractional stable processes 0a H(ab;.) of (4.1)

are indexed by the parameters (ab) + D. We now show that each ray through the

2origin of the parameter space R+ determines a distinct complex process in

distribution (up to scaling of course). We also show that the real harmonizable

fractional stable processes Ae 8 (a,b;.) are all multiples of each other in

distribution, namely each Ne aH(a.b;.) is a multiple of the process

a H
-A .
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(4.4) ,t=H ) = eiti lI-H- I/adMX), t ,

Usin tX 1H-i/a 0 o X11i-H-1
fX Il df(7 ) -f , c X - I/ d (X) '

where M1 and M2 are the real and imaginary parts of the complex SaS motion 1.

It follows by [16], Theorem 7.2. that 1 and M2 are real SaS motions, whose

increments are independent at distinct points X 1 0 "2: dMl(?,l) u dM2 ("2 ). and

are dependent at the same point X in the following manner:

d 1/2
(dli(.). dM2 (X)) = 2 (d,)I/a2R (C. G2 )

where R is positive (a/2)-stable with E exp(-rR) = exp(-ra/2 ). r 0. G1 and G2

are standard normal, and R. G1, 02 are independent. It should be mentioned here

that 8aH ll;t) is also mentioned in the recent paper [20].

Theorem 4.1 Let 1(a 2, 0(H(l, a 0, b 0, a+b>0, and 8 (a,b;-) be given by

(4.1). Then we have S

(4.5) (a+b) 1aH(aib (a b -/ 0 (ab)

if and only if

(i) a=a = 0 or %

(ii) b = b' = 0 or

(iii) aa'bb' ; 0 and a/b = a'/b'.

Also for all a.a',b,b' we have

d
(4.6) (aa+ba)-1/a3e 0.(a.b;.) = (a a+b' a -1/ae 0a(a'.b';').

Proof. In view of (2.7) the complex radially SaS r.v. 's ffdZ and fgdZ have the -

same distribution if and only if their scale parameters IIffdZIja = flfladl and

l lfgdZlIa = f1gladda are equal. Thus to compare the marginal distributions of

H(ab;t) and ,H(a'.b',t) we need to compute their scale parameter. For
a' aV

I-C e 1 -1 %t" . -

%, %~ %~~ '
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simplicity we drop the subscripts a.H in 8 and Y. We have

I ta(a.b;lt) Il j IeitX 1-H-1/a 1-H-1/a)a dN

a+X (a,\+d+ bX

tAsin(!)l (a"-A"(l -H)- 1 + baha ( 1- H )- 1) d?

= (aa+ba) 2a f0 Isin(.)I X-(a+l) dX

= lal(aab a ) ga(I-H) a -€a + 1) &

ItIaH (aa+b ) D

Hence it follows that for each fixed t>O,d
(a a+ba)-la@(a,b;t) = (a'a+b a)-lfa(a.',b';t).

In view of the one-to-one relationship between the si SaS process 8(ab;-)

of (4.1) and its corresponding nonanticipating stationary SaS process Y(a.b;-)

of (4.2), (4.5) is equivalent to .1

d
(aa+ba)-I/ay(a,b;-) = (a a+b'a)-1/ay a ',b';-)

which, because of (2.7). is equivalent to

N N_

(4.8) II 1 z (a+ba)-l/aY(abtn)I a = II z z(a'a+ba)-l/a(a',b',tn)la.
n=l n=l nn n a

But

N.
(4.9) II z (a' aba a b; t)Il.

n=1

N. it X -/
a a n la aa(l-H)-I I-H)-I + -a/2

= (a +b) I z e (a + + a( ) d

n=ln

= (a+ba)- 1; {0 a al I+ z e +bal I z e Ia  a(I-H)-I(I+, 2)"a/2 dX .

n= 1 n= I".

N' ,

• €+ ir ,
+  

€" r ' €" it" ,€" .. " 11" .¢ • . • % , • - • • . . . - ..

lj lIlll l l- # .,al1.l I -,l ,I e .,l 1 +1 _, m s m~l I " + . + I'm mdm, l l+ l d ...mp, .j.A .41 .J .Jm, ,, q[ = j sj . j •.j- lmik jl •a t. ~
V, . - V -.

+
+ I k -I | "I : r _ _ " + - u - . , , "r
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Hence if one of conditions (i), (ii). (iii) holds then (4.8) holds, and so does

(4.5). This is the "if" part. #,

We next prove the "only if" part. Since (i) and (ii) are easy cases, we

only show that (4.8) implies (iii). As usual, we consider (4.9). with N=2. -

Putting c = b/a and taking zl=l, z2=-i. t 1=O, t 2 =t O, (4.9) becomes

W itX a - itxma, IH- (X2 -a/2 X
-1cfso {11+ie + c l+ie-t } )a(1H)- (1+X ) dX.

1+'pa

Therefore (4.8) becomes, with c' = b'/a',

,C qa at
(4.10) (1ca(1- ca)(ca- [a txla ) -H)-I

(+c a)(ca 0 Il+iei Il+ie-t xa(H (1+ 2 )" 2d

2a/2(ca-ca 2 -H-12-a/2
(l+ca)(1-c'a) JO {(l-sintX)t) 2  al - + -/ = 0

for all t 0 0. We now show that (4.10) is possible only when c = c'. To this

end, it is enough to show that

a/2 a/ Xa(I-H)-l (+ 2 )-a/2  of(t) := Jo {(l+slntX) - (1-sintX) (1+X2)0dX 0
'.". .

for some t > 0.

We first consider the case 1 aH < 2. We have

= ./2t {(+CO~/ atXa/2/2) (1-H)-l (l+X2)-a/2 df(t) (f; + fl, 2 t) 1sit) -lin

T./2t 2 a/2 2( a-H2d - 2.-a/2

- O 2i 2  a(l-H)-l (+2) -a/2

_> t.r/2t ;Xa(1-H) ( 1 +,2) -c/2 dX - a- d2 "'
V 0 d- 2J ir/2t

In the following, c(-,-) will denote positive constants depending only on the

parameters in the parentheses. If 1 < aH < 2, for sufficiently small t>0 we

have

delm~ %
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f(t) > cl(a.H) t - c2 (aH) t a > 0.

If aH = 1. also for sufficiently small t > 0 we have

f(t) > c3 (a) t log - - c4 t > O.

We next consider the case 0 ( aH ( 1. By changing variables, we have

{(Hsnxa/'2 -a/2 a-all-i1 2 2 -a/2
f(t) = t( fi (l+sinx) - (1-sinx)a 2 x (t +x2) dx

= t fo {(i+sinx)a/2 - (- a/2 x-a- dx

+ taHo {(l+sinx)a/2 -(1-sinx) a/2} {(i+t 2x 2) -a/2-1) x -al dx

(4.12) =: ta H I(a.H) + g(t)}.

Since x - H - I is strictly decreasing on (0.0). we have c5 (aH) > 0. Choosing r

e > 0 and t > 0 sufficiently small we obtain

Jg(t)l 0 I(l+sinx) a/2-(1-sinx) 2 {i - (l+t2/x2) - a / 2 ) x- a l - 1 dx

t2~~ x 2 x-all- Idx pJ

S2 f- x-aHdx + 2 t2 -- ld

0 e2
* i-all 22 x

< + 2t< (a,H)
1-all (aH+2)eal 2

Hence by (4.12). we have f(t) > 0 for sufficiently small t > 0. This concludes

the proof of the "only if" part.

The case of the real processes Me 8(a.b;-) is easier to handle, because

their scale parameter is as in (4.7). and in (4.8) we need to consider only real

coefficients rn. in which case (4.9) simplifies to

N (a+ba i/a ),a = N itnXa - )- 1  +,2)-a/2 d?I) Y(a.b;tn a ll 0 I r n e (N
n=l n=1

a a -i/a d ,a a -1/a
and shows that (a +b)I e Y(a.b;,) = (a' +b' ) Mae Y(a' .b';,) for all

% %% % % % -. ,.'':' ":';-',''';-,L-.-'<''-'".". .',%:".,"..",.,.....:,:_'.:,;; ',,. ,, ,?.
i m '. . . .
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a.b.a'.b'. and hence (4.6). 0

By a reasoning analogous to that at the end of Section 3, if 1/a ( H < 1,

then , (a b;t) has a sample continuous version. whose paths have nowhere

bounded variation. (When 0 < H g 1/a the paths of 8 H(a.b;t) are expected to

be nowhere bounded.)

5. The harmonizable versus the linear fractional stable processes

In this section we show that, when 1(a(2, the real harmonizable fractional

stable process introduced in Section 4 is different from the linear fractional

stable processes discussed in Section 3.

Theorem 5.1 Let 1(a2. Then the law of the real harmonizable fractional stable

process a.*) of (4.4) is distinct from the laws of the linear fractional

stable processes Aa.H (a,b;,) of (3.1) when H # I/a, and A(-) of (3.3) when

H=l/a.

Proof. We first consider the case H X 1/a. Recall from (4.6) that 1IIa(t)j1I~~aHt laaHI, . ~
jtHa, a/~/a j, it H~l/a../a ::ItIH rand from (3.10) that IAHa.b;t)lla It H(ab)

aH Haa .,w assume,
It= H H(a b). For simplicity we delete the subscripts a,H. We will assume

4. a. H

-l d
-I*(') = 6-1A(a.b;.)

and we will reach a contradiction. This implies the equality in distribution of

the corresponding nonanticipating stationary SaS processes given in (4.2) and

(3.4):

-l 0itX t 1j-H-/a d I
,e -iX-I dM(X), tCh} = ab(t-s)(s). R.

Introducing the independent radially SaS increments process N:

--. "
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lull-H-i/aN(X) =y dK) Xo C 1u)I ,

10(1+u 2)

with spectral measure t: dv(?X)/dX = (6/1) Nil-H-11(l+X2)- l/ 2 , it follows that

{ Oe f00 eitXdlp), t } {fhb(t-s)d(s). tCR}.

Since the spectral measure N has no atoms, the usual inversion relationship

gives with I=(xy), O~x<y.

N (I) = {N(I) + N(-I)} = {N(y) - N(x) + N(-x) - N(-y)}

T -iyt -ixt

____I Te e itX
l-f T -it S -e ''

2Y-

where the limit is in probability or in 11-11a-norm. For simplicity we put

e-iyt-e - ix te fl-iUtu '

= =: i(t)
-it I

and drop the subscripts in h It then follows that

4 d
N(I) = 1 tT ( h(t-s)dMs) dtNs( -t-4o0 _I ftfT

= lim ,m f lTfI(t)h(t-s)dt } dM(s).

Now IIjffdZl = Ilfll implies that ff dZ converges in 1111 -norm if and only
a a n a

iff converges in L . It follows from the above convergence in I1-11, norm as
n a

T-4o. that the integrand f Tufjh(t-s)dt converges in L a as T-4. and hence for

a.e.(s) along some subsequence Tn But
n|

lir ffl(t)h(t-s)dt f.. fi(t)h(t-s)dt for a.e.(s) .9.

by Lebesgue dominated convergence, since

-e iy t  e iX t a , 1/aJ .. 1/t s a
$ of,(t)h(t-s~ldt e e dt ,,-,,~a

, ,?, ., , e', 
.
e".", " *..,,'?' ,," #?,.'... ,,",L ~e'e;, e_¢' d'#'',£ €,-,g ,g,';v.;r ' .;• ¢, e.."e s-'. e ,"" e".-. ".'"..".-"e"e e". ",

TM

.p
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because a'>l (1/a + 1/a' = 1). We thus obtain

Ns) d i { f -fI(t)h(t-s)dt } dM(s).

It follows likewise that the joint distribution of Ns(I,), Ns(1 2 ) is the same as

that of

r._f ( (t)h(t-s)dt ) dM(s),'. {-f f2(t)h(t-s)dt I dM(s).

For disjoint intervals I, and 12 in R+, the independence of the former pair of

random variables implies that of the latter. But with 1<a<2, fgldZ and fg2dZ

are independent if and only if g1g2 = 0 a.e. (in this complex case see [4]).

Therefore with 11 = (O,x), 12 = (ab), O<x<a<b, we obtain

M -ixt f -ibt -iatit h(t-s)dt* -ie h(t-s)dt = 0 a.e.(s).

The same argument used to show integrability of f1(°)h(--s), establishes the

continuity of the integral __fi(t)h(t-s)ds as a function of s, since the map

R 3 s -* h(--s) C La is continuous. Thus the above equality holds for all s.

Putting s=0, we obtain

f C e- iXt S I i e-i~b-a) _ 1 O. tat
(5.1) -it h( t)at -it e e-ah(t)dt = 0

But for h C La wth Fourier transform H C L , we have (cf. (22:]. Theorem 74) '

x-ixt
H(x) = _h(t -ib- dt a.e. (x)

and 0

d co e -iyt-1 e-1ahtdH(y+a) ! f e h(t)dt

(which follows by exactly the same proof as for Theorem 74 in [22]). Thus 4

differentiating (5.1) with respect to x and y=b-a we obtain H(x)H(b) =0 for all

O<x<b, where H is the Fourier transform of h. It follows that H 0 a.e. on R+;

-,*..-.itd % % %r 0
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and likewise on R. Thus H = 0 which implies h = 0 a.e. Because of the linear

independence of h1 and h2 in (3.6) and (3.7), h =0implies a = 0 = b whichI a.b=

contradicts a + b A 0.

The case H = 1/ca can be treated similarly. 0

Now consider for l<a 2 the real harmonizable fractional stable process

/aM~t = Ste j~C1IXIl/ dM(X), teIR,

which is (1/a)-ss si SaS process. It is distinct from SaS motion (the simplest

(1/a)-ss si SaS process). as it does not have independent increments. As we

have seen in Theorem 4.1 it is also distinct from the log-fractional stable

process A(-. introduced in [11] as a new (l/a)-ss in SaS process. Thus

-is a new example of a (l/a)-ss si SaS process.

In [7]. Theorem 3.1, it was shown (using Beurling's theorem) that the class

of complex nonanticipating. invertible. SaS moving average processes is disjoint

from that of the regular, harmonizable, stationary SaS processes. The proof of

Theorem 5.1 shows that the two classes of processes, {OleJ2f IId() t EI}an

ffMh(t-s)dM(s), t C IR), are disjoint. Namely, the entire class of real

harmonizable stationary SaS processes is disloint from that of real SaS moving

average processes.

6. The doma.in of attraction of the harmonic fractional stable process

The domaein of attraction of the linear fractional and of the log-fractional

stable processes has been studied in [1], [2], [10], [11], [12). In this

section, we study the domain of attraction of the H-self-similar, symmnetric

o ca-stable process with stationary increments 8 a b;-) introduced in Section 4.

We start with E)~* 1 ~
a . Hp

%I.,

N 41 J

* t~e n..' a .. 6



22

Theorem 6.1. Let 1 < a < 2. 1-1/a < H < 1, M be the complex SaS motion ine

(4.1), {Y} be the harmonizable SaS sequence

nn

n by c

=0. c n= ml"7_ for n Ai 0. Then {Z n} is well-defined by (6.1) and as n-,.

1[nt) d

H m= 1 *v_ Cra.H(";

d
where C _r= 4T(-r) cos(rw/2), and -+ means the convergence of all finite

dimensional distributions of the indicated process.

Proof. (Step 1) We show that {Z}) is well-defined. Since

w inX n-(imx
I= -Yk f_ e IX c me )dM(X).
jkj Km=n-K

lkkK ckMk
it suffices to show that the Fourier series im1 c e (i.e. the sequence of

its partial sums) converges in L a (-Tw). Since -Y <1. c m = Imji' 1  0 as

Il and thus 21 e I"" s convergent everywhere except at X \ 0 (mod 2r)

(see [3], pp. 87-88). Also since a > 1. a necessary and sufficient condition

for c e~~u~ e L (-w.T) is 1' m (see [3]. p. 207). which is

satisfied since a(-1-)+a-2 = a(H-1)-l < -1. In fact the argument in [3], p.

208, shows that In this case the sequence of partial sums converges in L a (-1T~).

For completeness, we show this fact below.

For simplicity, we consider the convergence of -

m

fm(x) =I ck cosloc to f(x) I ck cos oc
k=l k= 1

% % %.%-W % % % %
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in La(O.) as m - . By the same argument a.s in [3], p. 208, for n > m. if

7r/(n-m+) x ( /(n-m),

n 0
If M(x) - f(x)l 1 ck + 1 ck cos kxl

k=m+1 k=n+1

n n n

F. C + r Cn ck + const.(n-m)cn  2 2 ck .

k km+ k x n k=m+l k=m+

, k=- kZ +l C1

Hence, with Bn = e=m+l c

Slla ?T/(n-m) If (x)-f~x)la dx

f0 Ifm(X)-f(x) dx = o /(n-m+l)
n=m+l

M 7r/(n-m) a a -2
const. 2 f B const. 2 B (n-)-

ir/(n-rn+l)n mln
n=m+lnn

00

const. I Ba e-
2

e+rn

by a similar argument as in Theorem 2 in Appendix 22 of [3].

0 00

-() + const. C a 2 const. C a a-2 for large m.
m e=l+ m  os+m

a a-2
We will show lim -  0 under our assumptions. LetWe~ ~ ~~-0 wilso lm_ .=I Ce+m_

-,

A := 2 Ca Sa-2 <

-" For any e > 0, there exists L L(e) such that =L cae < e. For any
$=L~lA

m > LA 1/1-,)a/ ,

a a-2 a a-2

I C A+me A ( e.
e=L+l A=L+l

Note that

<Iep m A A/Cl-L)a for t L.

" Hence

A 1/C11 =Ahm ra J < Al/a cV.
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Therefore any m > LA''~e

I c a a-2 < --v~ L ca ea-2 E(1-'v)a
e=1 8-9-r A eI e8

Hence

urn~ su c a-2 (66(1-vY)a

and so ' 1W

urn a 8 8a-2

concluding

li 0~ If m (x) -f(X)I" c = 0.

(Step 2 We have for each t > 0.

1[nt]
Zn(t) :=- I Zm

n rn=l

- WJ~r [nt] i,,NkGO -ikNIe )Ick e dM(X
n rn=1 k=-0

1 y flT nt] irnun 00 -iku/n
(1 I le II-...', %n r-1/a+l -ni m=1 k-cOw

(- I IIek d'

m=1 n

(6.2) fn' K (t~u)L (u) dM(u) =:Z (t).
niT n n n

where

[nt] mu/n
K (t~u)- I e Ju IInw.

- n ~iunt/nlu nT

i tu

n-qo iu-1 0i
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and V.

-iku/nLn(u) = -2 1 ck e , 0 < lui I nw.
n n

We now follow the approach of [14]. Let f(X) be a symmetric, twice

differentiable function such that f(X) =1. I I Y/4. f(N) = 0. INI Y r/2; and

f(X) is monotone decreasing for X > 0. Then by [14]. p. 138,

(6.3) c := C - e 1  N' f(X)dk = Ik'- 1 + 0(lk -2 )

and

(6.4) 1 c$k e-iC = cx-f(x) for Ixl r.

k =__..w i

= C lxl- '  for Ixl 1/4,

except for x = 0. Now put

(6.5) Z'(t) = nr Kn(t'u) L(u) dM(u),

where
1 -iku/n

(6.6) Ln(u) = c e kn n k=-

by (6.4) and thus,

(6.7) Ln(U) C Clul-". 0 < Jul ny4,,,/

.%

(6.8) Ln(U)  C lul-'Y.  0 < Jul nwr. ,%

nI ,

(Step 3 We show that for each t > 0 as n-,

n* n

in probability, or equvalently. in view of (6.2) and (6.5). that as n

"% % % . % O--e %
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n T IKn(t.u)la ILn(u) - Ln(u) l du - 0.
For u Owe have n

~I

( I  - -L_ L)e- =4 I  const.IL nCu ) -L '(u ) l - ." k -/ n

since by (6.3), ck -c = O(lk1-2 ). Also for 0 < lul nw.

(6.10) IK n(t~u)l ijII
nI 2nu
sin(2 ) - nTn u)j f"

Since i > 0 and a > 1, it follows that with 0 < a < nr,

f KLnu(t~u)a ILn(u) - Ln(U) a du const, du

a< I u I <nan 
n aI a

(6.11) const. 0 as n-.
n 

.C.

Thus it remains to show that

" IK (tu) a ILn(u) -
a du -+ 0 as n-4.lul<a n n

However, by the argument in [14] (see Equations (2.10). (2.16), and the next one S,

on p. 139 in [14]), we see that

lul<n, IK n (t 'u ) 12 IL n(u) - (u) 12 lulq-1 du -. 0 as n " , ,5, Vl
for any q E (0,1). Hence is

luka IKn(t'u)12 ILn(u) - Ln(u) I2 lulq-ldu 0 as n -

which implies (6.11) by Hidlder's inequality.

(Step 4) We finally show that for each t > 0,

(6.12) Z'n(t) " ,H, '

n.
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in probability, or equivalently that

ii:*

(6.13) IJZ'(t)-Ce. = ni K (t~u)L'(u) -C e Ju- a du

n I. H"';) aIC n lI Iu

+ I uI>nw -2 iu- lr ad

-. 0 as n- .

The integral lunwtends to 0 as n -~because the integrand in Lebesgue

integrable over IR. For the integral over IuI~nir we have from (6.6).

g (t~u) K (t~u) L'(u) - C e it l - 1
n n n I iu

itu 1
CIIul' { K(t-u) f(u) in -

I n' ni

It then follows from (6.7) that as n -

and from (6.8) and (6.10) that

Ign(t'u)l Cl u I m {lt. .j V ulTnr

where the function on the right hand side is in L a(PR) since a7v = I-a(I-H) < 1

and a(-Y+l) = al > 1. Hence the dominated convergence theorem implies

~ I~(~u)'~du -*0 as n

and thus (6.13) is established.

It then follows from (6.12) that as n .

Ia Z'(t) - C a aEH lI;t)
in I j=1

in probability, and the result follows from

R e % 0 e I-

~~~~~~~~~~~~ %~UW,~ 4pW~p%~ ~.%%*S 2
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3di
I a Z (t_) Za Z(t ,.

j=l J= n

which is established as (6.2). and from (6.9). 0

The restriction 1-1/a < H < 1 in Theorem 6.1 was used only in the estimate

(6.11). If the left hand side of (6.11) could be shown to converge to zero for

0 < H < 1. then Theorem 6.1 would hold for all 0 < H < 1.

With some modification of the proof of Theorem 6.1 along the idea of Major

[14]. we obtain the following generalization.

Theorem 6.2 Let a O, b>O. a+b>O and define

A a+b a-b

§F( -Y) cos(-rw/2) sin(-rw/2)

where - = H+l/a-I as in Theorem 6.1. In the assumption of Theorem 6.1. we S

replace cn = In i -  n A 0. by

n>O.

AnI"O'. n.<0

Then we have

1 [nt] d abt.*S-
- z -. 6
n m=l m a .H

Sketch of Proof. We give only the outling of the proof here and omit the 0

details.

With the same function f. as in the paragraph preceding (6.3). we define,

instead of the {ck} of (6.3),

af ikX -- x K' fT e ik X X-'f(X) sgn X dX,
k 2e xIf (X)dx, - ..

where

K = 2(A+A)r(,)cos(-,/2). K; = 2(A-A)r(-)sin(-,/2).

4. % %; %*V~~*~
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Then by the same argument as in [14].

a = -{A+A) Iki " -  + o(k-). bk = A-A)jkj7- sgn k + O(k -

implying

al6III + O(k- 2 ). k > 0,

Aj)j l - + O(k 2 ). k < 0.

and also

0@

I a] e-ikx = K 1x-If(x). I b e = 1K' lxl-'f(x) sgn x.
k=-----

Now put

Z'(t) = f'" K (t~u)L'(u) dN(u),n -nw n n

with

I Ca -iku/n
Ln(U) = L I ci/ , 0 < u n,.

n rn k=-ow

Lnl(u) + L 2 (u)'

where

(6.15) L (u) K, lul- f() L.(u) =-'f-) sgn u.

n.1- n n 2() K,'u

Note that from (6.14). Ck-C. = O(k-2). So the same argument as in Step 2 of the

proof of Theorem 6.1 concludes that as n -*

n IK (t.u)la IL (u) - L(u)Ia du -+ 0.
-nw n n n 0

Step 4 will be handled as follows. First note that ,.

K ia+b), K; = -(a-b),

so that

%%
* % .4
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= + iK'. b =K - iK''
a K + , b K W

Hence we have

a (a.b;t) - e -.7 -
8a.H a -b) f= iu {(K +iK')u+ + (K -iK')u '  dM(u)

el tu-i (--1y

iutU- l K- lu + iKKIussgn u) dM(u)i
and

+ elul I et - du

't K iu lul- (K +iKsn u) Id

The second integral above tends to zero. As to the first integral we have from

(6.15) that the integrand without the a power is equal to

itu itu
Kn(t~u)Ln 1 (u) - K Ju l + Kn(t,u)L ,2(u) - iK u u

i tu- t
K Jul-'( Kn(t.u)f() eiu } + iK;IuI sgn u { Kn(tu)f( ) _ u }e '

By the same reasoning as in the proof of Theorem 6.1, the right hand side above

tends to zero, and the integral itself also converges to zero. 0 .

tend
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